next up previous contents
Next: About this document ... Up: NAMD 2.5b1 User's Guide Previous: Documentation   Contents

Bibliography

1
M. P. Allen and D. J. Tildesley.
Computer Simulation of Liquids.
Oxford University Press, New York, 1987.

2
P. H. Axelsen and D. Li.
Improved convergence in dual-topology free energy calculations through use of harmonic restraints.
J. Comput. Chem., 19:1278-1283, 1998.

3
F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, J. E. F. Meyer, M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi.
The protein data bank: A computer-based archival file for macromolecular structures.
J. Mol. Biol., 112:535-542, 1977.

4
D. L. Beveridge and F. M. DiCapua.
Free energy via molecular simulation: applications to chemical and biomolecualr systems.
Ann. Rev. Biophys. Biophys. Chem., 18:431-492, 1989.

5
S. Boresch and M. Karplus.
The role of bonded terms in free energy simulations. 1. theoretical analysis.
J. Phys. Chem. A, 103:103-118, 1999.

6
B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus.
CHARMM: a program for macromolecular energy, minimization, and dynamics calculations.
J. Comp. Chem., 4(2):187-217, 1983.

7
A. T. Brünger.
X-PLOR, Version 3.1, A System for X-ray Crystallography and NMR.
The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, 1992.

8
C. Chipot and D. A. Pearlman.
Free energy calculations. the long and winding gilded road.
Mol. Sim., 2001.

9
M. K. Gilson, J. A. Given, B. L. Bush, and J. A. McCammon.
The statistical-thermodynamic basis for computation of binding affinities: a critical review.
Biophys. J., 72:1047-1069, 1997.

10
W. Humphrey and A. Dalke.
VMD user guide (Version 0.94).
Beckman Institute Technical Report TB-94-07, University of Illinois, 1994.

11
P. M. King.
Free energy via molecular simulation: A primer.
In W. F. van Gunsteren, P. K. Weiner, and A. J. Wilkinson, editors, Computer simulation of biomolecular systems: Theoretical and experimental applications, volume 2, pages 267-314. ESCOM, Leiden, 1993.

12
P. A. Kollman.
Free energy calculations: applications to chemical and biochemical phenomena.
Chem. Rev., 93:2395-2417, 1993.

13
A. E. Mark.
Free energy perturbation calculations.
In P. Schleyer, editor, Encyclopaedia of computational chemistry, volume 2, pages 1070-1083. John Wiley and Sons, New York, 1998.

14
J. A. McCammon and S. C. Harvey.
Dynamics of Proteins and Nucleic Acids.
Cambridge University Press, Cambridge, 1987.

15
D. A. Pearlman.
A comparison of alternative approaches to free energy calculations.
J. Phys. Chem., 98:1487-1493, 1993.

16
A. Roitberg and R. Elber.
Modeling side chains in peptides and proteins: Application of the locally enhanced sampling technique and the simulated annealing methods to find minimum energy conformations.
95:9277-9287, 1991.

17
C. Simmerling, T. Fox, and P. A. Kollman.
Use of locally enhanced sampling in free energy calculations: Testing and application to the $\alpha\rightarrow\beta$ anomerization of glucose.
120(23):5771-5782, 1998.

18
C. Simmerling, M. R. Lee, A. R. Ortiz, A. Kolinski, J. Skolnick, and P. A. Kollman.
Combining MONSSTER and LES/PME to predict protein structure from amino acid sequence: Application to the small protein CMTI-1.
122(35):8392-8402, 2000.

19
T. Straatsma and A. McCammon.
Computational alchemy.
Ann. Rev. Phys. Chem., 43:407-435, 1992.

20
W. F. van Gunsteren.
Methods for calculation of free energies and binding constants: successes and problems.
In W. F. Van Gunsteren and P. K. Weiner, editors, Computer simulation of biomolecular systems: theoretical and experimental applications, pages 27-59. ESCOM Science Publishers B. V., The Netherlands, 1989.

21
R. W. Zwanzig.
High temperature equation of state by a perturbation method. i. nonpolar gases.
J. Chem. Phys., 22:1420-1426, 1954.



namd@ks.uiuc.edu