00001 /*
00002 * macros.h
00003 *
00004 * Copyright (C) 1996 Limit Point Systems, Inc.
00005 *
00006 * Author: Curtis Janssen <cljanss@ca.sandia.gov>
00007 * Maintainer: LPS
00008 *
00009 * This file is part of the SC Toolkit.
00010 *
00011 * The SC Toolkit is free software; you can redistribute it and/or modify
00012 * it under the terms of the GNU Library General Public License as published by
00013 * the Free Software Foundation; either version 2, or (at your option)
00014 * any later version.
00015 *
00016 * The SC Toolkit is distributed in the hope that it will be useful,
00017 * but WITHOUT ANY WARRANTY; without even the implied warranty of
00018 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00019 * GNU Library General Public License for more details.
00020 *
00021 * You should have received a copy of the GNU Library General Public License
00022 * along with the SC Toolkit; see the file COPYING.LIB. If not, write to
00023 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
00024 *
00025 * The U.S. Government is granted a limited license as per AL 91-7.
00026 */
00027
00028 /* True if the integral is nonzero. */
00029 #define INT_NONZERO(x) (((x)< -1.0e-10)||((x)> 1.0e-10))
00030
00031 /* Computes an index to a Cartesian function within a shell given
00032 * am = total angular momentum
00033 * i = the exponent of x (i is used twice in the macro--beware side effects)
00034 * j = the exponent of y
00035 * formula: am*(i+1) - (i*(i+1))/2 + i+1 - j - 1
00036 * The following loop will generate indices in the proper order:
00037 * cartindex = 0;
00038 * for (i=0; i<=am; i++) {
00039 * for (k=0; k<=am-i; k++) {
00040 * j = am - i - k;
00041 * do_it_with(cartindex); // cartindex == INT_CARTINDEX(am,i,j)
00042 * cartindex++;
00043 * }
00044 * }
00045 */
00046 #define INT_CARTINDEX(am,i,j) (((((((am)+1)<<1)-(i))*((i)+1))>>1)-(j)-1)
00047
00048 /* This sets up the above loop over cartesian exponents as follows
00049 * FOR_CART(i,j,k,am)
00050 * Stuff using i,j,k.
00051 * END_FOR_CART
00052 */
00053 #define FOR_CART(i,j,k,am) for((i)=0;(i)<=(am);(i)++) {\
00054 for((k)=0;(k)<=(am)-(i);(k)++) \
00055 { (j) = (am) - (i) - (k);
00056 #define END_FOR_CART }}
00057
00058 /* This sets up a loop over all of the generalized contractions
00059 * and all of the cartesian exponents.
00060 * gc is the number of the gen con
00061 * index is the index within the current gen con.
00062 * i,j,k are the angular momentum for x,y,z
00063 * sh is the shell pointer
00064 */
00065 #define FOR_GCCART(gc,index,i,j,k,sh)\
00066 for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
00067 (index)=0;\
00068 FOR_CART(i,j,k,(sh)->type[gc].am)
00069
00070 #define FOR_GCCART_GS(gc,index,i,j,k,sh)\
00071 for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\
00072 (index)=0;\
00073 FOR_CART(i,j,k,(sh)->am(gc))
00074
00075 #define END_FOR_GCCART(index)\
00076 (index)++;\
00077 END_FOR_CART\
00078 }
00079
00080 #define END_FOR_GCCART_GS(index)\
00081 (index)++;\
00082 END_FOR_CART\
00083 }
00084
00085 /* These are like the above except no index is kept track of. */
00086 #define FOR_GCCART2(gc,i,j,k,sh)\
00087 for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
00088 FOR_CART(i,j,k,(sh)->type[gc].am)
00089
00090 #define END_FOR_GCCART2\
00091 END_FOR_CART\
00092 }
00093
00094 /* These are used to loop over shells, given the centers structure
00095 * and the center index, and shell index. */
00096 #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\
00097 for((j)=0;(j)<(c)->center[(i)].basis.n;j++) {
00098 #define END_FOR_SHELLS }}
00099
00100 /* Computes the number of Cartesian function in a shell given
00101 * am = total angular momentum
00102 * formula: (am*(am+1))/2 + am+1;
00103 */
00104 #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0)
00105
00106 /* Like INT_NCART, but only for nonnegative arguments. */
00107 #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1)
00108
00109 /* For a given ang. mom., am, with n cartesian functions, compute the
00110 * number of cartesian functions for am+1 or am-1
00111 */
00112 #define INT_NCART_DEC(am,n) ((n)-(am)-1)
00113 #define INT_NCART_INC(am,n) ((n)+(am)+2)
00114
00115 /* Computes the number of pure angular momentum functions in a shell
00116 * given am = total angular momentum
00117 */
00118 #define INT_NPURE(am) (2*(am)+1)
00119
00120 /* Computes the number of functions in a shell given
00121 * pu = pure angular momentum boolean
00122 * am = total angular momentum
00123 */
00124 #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))
00125
00126 /* Given a centers pointer and a shell number, this evaluates the
00127 * pointer to that shell. */
00128 #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]])
00129
00130 /* Given a centers pointer and a shell number, get the angular momentum
00131 * of that shell. */
00132 #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am)
00133
00134 /* Given a centers pointer and a shell number, get pure angular momentum
00135 * boolean for that shell. */
00136 #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream)
00137
00138 /* Given a centers pointer, a center number, and a shell number,
00139 * get the angular momentum of that shell. */
00140 #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am)
00141
00142 /* Given a centers pointer, a center number, and a shell number,
00143 * get pure angular momentum boolean for that shell. */
00144 #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream)
00145
00146 /* Given a centers pointer and a shell number, compute the number
00147 * of functions in that shell. */
00148 /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */
00149 #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc)
00150
00151 /* These macros assist in looping over the unique integrals
00152 * in a shell quartet. The exy variables are booleans giving
00153 * information about the equivalence between shells x and y. The nx
00154 * variables give the number of functions in each shell, x. The
00155 * i,j,k are the current values of the looping indices for shells 1, 2, and 3.
00156 * The macros return the maximum index to be included in a summation
00157 * over indices 1, 2, 3, and 4.
00158 * These macros require canonical integrals. This requirement comes
00159 * from the need that integrals of the shells (1 2|2 1) are not
00160 * used. The integrals (1 2|1 2) must be used with these macros to
00161 * get the right nonredundant integrals.
00162 */
00163 #define INT_MAX1(n1) ((n1)-1)
00164 #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1))
00165 #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1))
00166 #define INT_MAX4(e13e24,e34,i,j,k,n4) \
00167 ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \
00168 :((e13e24)&&((k)==(i)))?(j):(n4)-1)
00169 /* A note on integral symmetries:
00170 * There are 15 ways of having equivalent indices.
00171 * There are 8 of these which are important for determining the
00172 * nonredundant integrals (that is there are only 8 ways of counting
00173 * the number of nonredundant integrals in a shell quartet)
00174 * Integral type Integral Counting Type
00175 * 1 (1 2|3 4) 1
00176 * 2 (1 1|3 4) 2
00177 * 3 (1 2|1 4) ->1
00178 * 4 (1 2|3 1) ->1
00179 * 5 (1 1|1 4) 3
00180 * 6 (1 1|3 1) ->2
00181 * 7 (1 2|1 1) ->5
00182 * 8 (1 1|1 1) 4
00183 * 9 (1 2|2 4) ->1
00184 * 10 (1 2|3 2) ->1
00185 * 11 (1 2|3 3) 5
00186 * 12 (1 1|3 3) 6
00187 * 13 (1 2|1 2) 7
00188 * 14 (1 2|2 1) 8 reduces to 7 thru canonicalization
00189 * 15 (1 2|2 2) ->5
00190 */