00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028 #ifndef _chemistry_qc_basis_integral_h
00029 #define _chemistry_qc_basis_integral_h
00030
00031 #ifdef __GNUC__
00032 #pragma interface
00033 #endif
00034
00035 #include <util/state/state.h>
00036 #include <util/group/message.h>
00037 #include <chemistry/qc/basis/basis.h>
00038 #include <chemistry/qc/basis/obint.h>
00039 #include <chemistry/qc/basis/tbint.h>
00040
00041 class SymmetryOperation;
00042 class RefSymmSCMatrix;
00043 class ShellRotation;
00044 class CartesianIter;
00045 class RedundantCartesianIter;
00046 class RedundantCartesianSubIter;
00047 class SphericalTransformIter;
00048 class SphericalTransform;
00049 class PointBag_double;
00050 class PetiteList;
00051
00054 class Integral : public SavableState {
00055 protected:
00058 Integral(const Ref<GaussianBasisSet> &b1,
00059 const Ref<GaussianBasisSet> &b2,
00060 const Ref<GaussianBasisSet> &b3,
00061 const Ref<GaussianBasisSet> &b4);
00062 Ref<GaussianBasisSet> bs1_;
00063 Ref<GaussianBasisSet> bs2_;
00064 Ref<GaussianBasisSet> bs3_;
00065 Ref<GaussianBasisSet> bs4_;
00066
00067
00068
00069 int storage_;
00070 int storage_used_;
00071
00072 Ref<MessageGrp> grp_;
00073 public:
00075 Integral(StateIn&);
00077 Integral(const Ref<KeyVal>&);
00078
00079 void save_data_state(StateOut&);
00080
00082 void set_storage(int i) { storage_=i; };
00084 int storage_used() { return storage_used_; }
00086 int storage_unused();
00087
00090 void adjust_storage(int s) { storage_used_ += s; }
00091
00093 Ref<PetiteList> petite_list();
00095 Ref<PetiteList> petite_list(const Ref<GaussianBasisSet>&);
00098 ShellRotation shell_rotation(int am, SymmetryOperation&, int pure=0);
00099
00101 virtual void set_basis(const Ref<GaussianBasisSet> &b1,
00102 const Ref<GaussianBasisSet> &b2 = 0,
00103 const Ref<GaussianBasisSet> &b3 = 0,
00104 const Ref<GaussianBasisSet> &b4 = 0);
00105
00106
00107
00108
00111 virtual CartesianIter * new_cartesian_iter(int) =0;
00114 virtual RedundantCartesianIter * new_redundant_cartesian_iter(int) =0;
00117 virtual RedundantCartesianSubIter *
00118 new_redundant_cartesian_sub_iter(int) =0;
00121 virtual SphericalTransformIter *
00122 new_spherical_transform_iter(int l,
00123 int inv=0, int subl=-1) =0;
00126 virtual const SphericalTransform *
00127 spherical_transform(int l,
00128 int inv=0, int subl=-1) =0;
00129
00131 virtual Ref<OneBodyInt> overlap() =0;
00132
00134 virtual Ref<OneBodyInt> kinetic() =0;
00135
00138 virtual Ref<OneBodyInt> point_charge(const Ref<PointChargeData>&) =0;
00139
00142 virtual Ref<OneBodyInt> nuclear() = 0;
00143
00145 virtual Ref<OneBodyInt> hcore() = 0;
00146
00149 virtual Ref<OneBodyInt> efield_dot_vector(const Ref<EfieldDotVectorData>&) =0;
00150
00152 virtual Ref<OneBodyInt> dipole(const Ref<DipoleData>&) =0;
00153
00155 virtual Ref<OneBodyDerivInt> overlap_deriv() =0;
00156
00158 virtual Ref<OneBodyDerivInt> kinetic_deriv() =0;
00159
00161 virtual Ref<OneBodyDerivInt> nuclear_deriv() =0;
00162
00164 virtual Ref<OneBodyDerivInt> hcore_deriv() =0;
00165
00167 virtual Ref<TwoBodyInt> electron_repulsion() =0;
00168
00170 virtual Ref<TwoBodyDerivInt> electron_repulsion_deriv() =0;
00171
00173 Ref<MessageGrp> messagegrp() { return grp_; }
00174 };
00175
00176
00177 #endif
00178
00179
00180
00181
00182