00001 /* 00002 * macros.h 00003 * 00004 * Copyright (C) 1996 Limit Point Systems, Inc. 00005 * 00006 * Author: Curtis Janssen <cljanss@ca.sandia.gov> 00007 * Maintainer: LPS 00008 * 00009 * This file is part of the SC Toolkit. 00010 * 00011 * The SC Toolkit is free software; you can redistribute it and/or modify 00012 * it under the terms of the GNU Library General Public License as published by 00013 * the Free Software Foundation; either version 2, or (at your option) 00014 * any later version. 00015 * 00016 * The SC Toolkit is distributed in the hope that it will be useful, 00017 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00018 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00019 * GNU Library General Public License for more details. 00020 * 00021 * You should have received a copy of the GNU Library General Public License 00022 * along with the SC Toolkit; see the file COPYING.LIB. If not, write to 00023 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 00024 * 00025 * The U.S. Government is granted a limited license as per AL 91-7. 00026 */ 00027 00028 /* True if the integral is nonzero. */ 00029 #define INT_NONZERO(x) (((x)< -1.0e-10)||((x)> 1.0e-10)) 00030 00031 /* Computes an index to a Cartesian function within a shell given 00032 * am = total angular momentum 00033 * i = the exponent of x (i is used twice in the macro--beware side effects) 00034 * j = the exponent of y 00035 * formula: am*(i+1) - (i*(i+1))/2 + i+1 - j - 1 00036 * The following loop will generate indices in the proper order: 00037 * cartindex = 0; 00038 * for (i=0; i<=am; i++) { 00039 * for (k=0; k<=am-i; k++) { 00040 * j = am - i - k; 00041 * do_it_with(cartindex); // cartindex == INT_CARTINDEX(am,i,j) 00042 * cartindex++; 00043 * } 00044 * } 00045 */ 00046 #define INT_CARTINDEX(am,i,j) (((((((am)+1)<<1)-(i))*((i)+1))>>1)-(j)-1) 00047 00048 /* This sets up the above loop over cartesian exponents as follows 00049 * FOR_CART(i,j,k,am) 00050 * Stuff using i,j,k. 00051 * END_FOR_CART 00052 */ 00053 #define FOR_CART(i,j,k,am) for((i)=0;(i)<=(am);(i)++) {\ 00054 for((k)=0;(k)<=(am)-(i);(k)++) \ 00055 { (j) = (am) - (i) - (k); 00056 #define END_FOR_CART }} 00057 00058 /* This sets up a loop over all of the generalized contractions 00059 * and all of the cartesian exponents. 00060 * gc is the number of the gen con 00061 * index is the index within the current gen con. 00062 * i,j,k are the angular momentum for x,y,z 00063 * sh is the shell pointer 00064 */ 00065 #define FOR_GCCART(gc,index,i,j,k,sh)\ 00066 for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\ 00067 (index)=0;\ 00068 FOR_CART(i,j,k,(sh)->type[gc].am) 00069 00070 #define FOR_GCCART_GS(gc,index,i,j,k,sh)\ 00071 for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\ 00072 (index)=0;\ 00073 FOR_CART(i,j,k,(sh)->am(gc)) 00074 00075 #define END_FOR_GCCART(index)\ 00076 (index)++;\ 00077 END_FOR_CART\ 00078 } 00079 00080 #define END_FOR_GCCART_GS(index)\ 00081 (index)++;\ 00082 END_FOR_CART\ 00083 } 00084 00085 /* These are like the above except no index is kept track of. */ 00086 #define FOR_GCCART2(gc,i,j,k,sh)\ 00087 for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\ 00088 FOR_CART(i,j,k,(sh)->type[gc].am) 00089 00090 #define END_FOR_GCCART2\ 00091 END_FOR_CART\ 00092 } 00093 00094 /* These are used to loop over shells, given the centers structure 00095 * and the center index, and shell index. */ 00096 #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\ 00097 for((j)=0;(j)<(c)->center[(i)].basis.n;j++) { 00098 #define END_FOR_SHELLS }} 00099 00100 /* Computes the number of Cartesian function in a shell given 00101 * am = total angular momentum 00102 * formula: (am*(am+1))/2 + am+1; 00103 */ 00104 #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0) 00105 00106 /* Like INT_NCART, but only for nonnegative arguments. */ 00107 #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1) 00108 00109 /* For a given ang. mom., am, with n cartesian functions, compute the 00110 * number of cartesian functions for am+1 or am-1 00111 */ 00112 #define INT_NCART_DEC(am,n) ((n)-(am)-1) 00113 #define INT_NCART_INC(am,n) ((n)+(am)+2) 00114 00115 /* Computes the number of pure angular momentum functions in a shell 00116 * given am = total angular momentum 00117 */ 00118 #define INT_NPURE(am) (2*(am)+1) 00119 00120 /* Computes the number of functions in a shell given 00121 * pu = pure angular momentum boolean 00122 * am = total angular momentum 00123 */ 00124 #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am)) 00125 00126 /* Given a centers pointer and a shell number, this evaluates the 00127 * pointer to that shell. */ 00128 #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]]) 00129 00130 /* Given a centers pointer and a shell number, get the angular momentum 00131 * of that shell. */ 00132 #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am) 00133 00134 /* Given a centers pointer and a shell number, get pure angular momentum 00135 * boolean for that shell. */ 00136 #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream) 00137 00138 /* Given a centers pointer, a center number, and a shell number, 00139 * get the angular momentum of that shell. */ 00140 #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am) 00141 00142 /* Given a centers pointer, a center number, and a shell number, 00143 * get pure angular momentum boolean for that shell. */ 00144 #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream) 00145 00146 /* Given a centers pointer and a shell number, compute the number 00147 * of functions in that shell. */ 00148 /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */ 00149 #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc) 00150 00151 /* These macros assist in looping over the unique integrals 00152 * in a shell quartet. The exy variables are booleans giving 00153 * information about the equivalence between shells x and y. The nx 00154 * variables give the number of functions in each shell, x. The 00155 * i,j,k are the current values of the looping indices for shells 1, 2, and 3. 00156 * The macros return the maximum index to be included in a summation 00157 * over indices 1, 2, 3, and 4. 00158 * These macros require canonical integrals. This requirement comes 00159 * from the need that integrals of the shells (1 2|2 1) are not 00160 * used. The integrals (1 2|1 2) must be used with these macros to 00161 * get the right nonredundant integrals. 00162 */ 00163 #define INT_MAX1(n1) ((n1)-1) 00164 #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1)) 00165 #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1)) 00166 #define INT_MAX4(e13e24,e34,i,j,k,n4) \ 00167 ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \ 00168 :((e13e24)&&((k)==(i)))?(j):(n4)-1) 00169 /* A note on integral symmetries: 00170 * There are 15 ways of having equivalent indices. 00171 * There are 8 of these which are important for determining the 00172 * nonredundant integrals (that is there are only 8 ways of counting 00173 * the number of nonredundant integrals in a shell quartet) 00174 * Integral type Integral Counting Type 00175 * 1 (1 2|3 4) 1 00176 * 2 (1 1|3 4) 2 00177 * 3 (1 2|1 4) ->1 00178 * 4 (1 2|3 1) ->1 00179 * 5 (1 1|1 4) 3 00180 * 6 (1 1|3 1) ->2 00181 * 7 (1 2|1 1) ->5 00182 * 8 (1 1|1 1) 4 00183 * 9 (1 2|2 4) ->1 00184 * 10 (1 2|3 2) ->1 00185 * 11 (1 2|3 3) 5 00186 * 12 (1 1|3 3) 6 00187 * 13 (1 2|1 2) 7 00188 * 14 (1 2|2 1) 8 reduces to 7 thru canonicalization 00189 * 15 (1 2|2 2) ->5 00190 */