Main Page   Class Hierarchy   Compound List   File List   Compound Members   Related Pages  

macros.h

00001 /*
00002  * macros.h
00003  *
00004  * Copyright (C) 1996 Limit Point Systems, Inc.
00005  *
00006  * Author: Curtis Janssen <cljanss@ca.sandia.gov>
00007  * Maintainer: LPS
00008  *
00009  * This file is part of the SC Toolkit.
00010  *
00011  * The SC Toolkit is free software; you can redistribute it and/or modify
00012  * it under the terms of the GNU Library General Public License as published by
00013  * the Free Software Foundation; either version 2, or (at your option)
00014  * any later version.
00015  *
00016  * The SC Toolkit is distributed in the hope that it will be useful,
00017  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00018  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00019  * GNU Library General Public License for more details.
00020  *
00021  * You should have received a copy of the GNU Library General Public License
00022  * along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
00023  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
00024  *
00025  * The U.S. Government is granted a limited license as per AL 91-7.
00026  */
00027 
00028 /* True if the integral is nonzero. */
00029 #define INT_NONZERO(x) (((x)< -1.0e-10)||((x)> 1.0e-10))
00030 
00031 /* Computes an index to a Cartesian function within a shell given
00032  * am = total angular momentum
00033  * i = the exponent of x (i is used twice in the macro--beware side effects)
00034  * j = the exponent of y
00035  * formula: am*(i+1) - (i*(i+1))/2 + i+1 - j - 1
00036  * The following loop will generate indices in the proper order:
00037  *  cartindex = 0;
00038  *  for (i=0; i<=am; i++) {
00039  *    for (k=0; k<=am-i; k++) {
00040  *      j = am - i - k;
00041  *      do_it_with(cartindex); // cartindex == INT_CARTINDEX(am,i,j)
00042  *      cartindex++;
00043  *      }
00044  *    }
00045  */
00046 #define INT_CARTINDEX(am,i,j) (((((((am)+1)<<1)-(i))*((i)+1))>>1)-(j)-1)
00047 
00048 /* This sets up the above loop over cartesian exponents as follows
00049  * FOR_CART(i,j,k,am)
00050  *   Stuff using i,j,k.
00051  *   END_FOR_CART
00052  */
00053 #define FOR_CART(i,j,k,am) for((i)=0;(i)<=(am);(i)++) {\
00054                            for((k)=0;(k)<=(am)-(i);(k)++) \
00055                            { (j) = (am) - (i) - (k);
00056 #define END_FOR_CART }}
00057 
00058 /* This sets up a loop over all of the generalized contractions
00059  * and all of the cartesian exponents.
00060  * gc is the number of the gen con
00061  * index is the index within the current gen con.
00062  * i,j,k are the angular momentum for x,y,z
00063  * sh is the shell pointer
00064  */
00065 #define FOR_GCCART(gc,index,i,j,k,sh)\
00066     for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
00067     (index)=0;\
00068     FOR_CART(i,j,k,(sh)->type[gc].am)
00069 
00070 #define FOR_GCCART_GS(gc,index,i,j,k,sh)\
00071     for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\
00072     (index)=0;\
00073     FOR_CART(i,j,k,(sh)->am(gc))
00074 
00075 #define END_FOR_GCCART(index)\
00076     (index)++;\
00077     END_FOR_CART\
00078     }
00079 
00080 #define END_FOR_GCCART_GS(index)\
00081     (index)++;\
00082     END_FOR_CART\
00083     }
00084 
00085 /* These are like the above except no index is kept track of. */
00086 #define FOR_GCCART2(gc,i,j,k,sh)\
00087     for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
00088     FOR_CART(i,j,k,(sh)->type[gc].am)
00089 
00090 #define END_FOR_GCCART2\
00091     END_FOR_CART\
00092     }
00093 
00094 /* These are used to loop over shells, given the centers structure
00095  * and the center index, and shell index. */
00096 #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\
00097                           for((j)=0;(j)<(c)->center[(i)].basis.n;j++) {
00098 #define END_FOR_SHELLS }}
00099 
00100 /* Computes the number of Cartesian function in a shell given
00101  * am = total angular momentum
00102  * formula: (am*(am+1))/2 + am+1;
00103  */
00104 #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0)
00105 
00106 /* Like INT_NCART, but only for nonnegative arguments. */
00107 #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1)
00108 
00109 /* For a given ang. mom., am, with n cartesian functions, compute the
00110  * number of cartesian functions for am+1 or am-1
00111  */
00112 #define INT_NCART_DEC(am,n) ((n)-(am)-1)
00113 #define INT_NCART_INC(am,n) ((n)+(am)+2)
00114 
00115 /* Computes the number of pure angular momentum functions in a shell
00116  * given am = total angular momentum
00117  */
00118 #define INT_NPURE(am) (2*(am)+1)
00119 
00120 /* Computes the number of functions in a shell given
00121  * pu = pure angular momentum boolean
00122  * am = total angular momentum
00123  */
00124 #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))
00125 
00126 /* Given a centers pointer and a shell number, this evaluates the
00127  * pointer to that shell. */
00128 #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]])
00129 
00130 /* Given a centers pointer and a shell number, get the angular momentum
00131  * of that shell. */
00132 #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am)
00133 
00134 /* Given a centers pointer and a shell number, get pure angular momentum
00135  * boolean for that shell. */
00136 #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream)
00137 
00138 /* Given a centers pointer, a center number, and a shell number,
00139  * get the angular momentum of that shell. */
00140 #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am)
00141 
00142 /* Given a centers pointer, a center number, and a shell number,
00143  * get pure angular momentum boolean for that shell. */
00144 #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream)
00145 
00146 /* Given a centers pointer and a shell number, compute the number
00147  * of functions in that shell. */
00148 /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */
00149 #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc)
00150 
00151 /* These macros assist in looping over the unique integrals
00152  * in a shell quartet.  The exy variables are booleans giving
00153  * information about the equivalence between shells x and y.  The nx
00154  * variables give the number of functions in each shell, x. The
00155  * i,j,k are the current values of the looping indices for shells 1, 2, and 3.
00156  * The macros return the maximum index to be included in a summation
00157  * over indices 1, 2, 3, and 4.
00158  * These macros require canonical integrals.  This requirement comes
00159  * from the need that integrals of the shells (1 2|2 1) are not
00160  * used.  The integrals (1 2|1 2) must be used with these macros to
00161  * get the right nonredundant integrals.
00162  */
00163 #define INT_MAX1(n1) ((n1)-1)
00164 #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1))
00165 #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1))
00166 #define INT_MAX4(e13e24,e34,i,j,k,n4) \
00167   ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \
00168         :((e13e24)&&((k)==(i)))?(j):(n4)-1)
00169 /* A note on integral symmetries:
00170  *  There are 15 ways of having equivalent indices.
00171  *  There are 8 of these which are important for determining the
00172  *  nonredundant integrals (that is there are only 8 ways of counting
00173  *  the number of nonredundant integrals in a shell quartet)
00174  * Integral type   Integral    Counting Type
00175  *     1           (1 2|3 4)      1
00176  *     2           (1 1|3 4)      2
00177  *     3           (1 2|1 4)       ->1
00178  *     4           (1 2|3 1)       ->1
00179  *     5           (1 1|1 4)      3
00180  *     6           (1 1|3 1)       ->2
00181  *     7           (1 2|1 1)       ->5
00182  *     8           (1 1|1 1)      4
00183  *     9           (1 2|2 4)       ->1
00184  *    10           (1 2|3 2)       ->1
00185  *    11           (1 2|3 3)      5
00186  *    12           (1 1|3 3)      6
00187  *    13           (1 2|1 2)      7
00188  *    14           (1 2|2 1)      8    reduces to 7 thru canonicalization
00189  *    15           (1 2|2 2)       ->5
00190  */

Generated at Thu Oct 4 18:08:45 2001 for MPQC 2.0.0 using the documentation package Doxygen 1.2.5.